Field Balancing and Harmonic Vibration Suppression in Rigid AMB-Rotor Systems with Rotor Imbalances and Sensor Runout
نویسندگان
چکیده
Harmonic vibrations of high-speed rotors in momentum exchange devices are primary disturbances for attitude control of spacecraft. Active magnetic bearings (AMBs), offering the ability to control the AMB-rotor dynamic behaviors, are preferred in high-precision and micro-vibration applications, such as high-solution Earth observation satellites. However, undesirable harmonic displacements, currents, and vibrations also occur in the AMB-rotor system owing to the mixed rotor imbalances and sensor runout. To compensate the rotor imbalances and to suppress the harmonic vibrations, two control methods are presented. Firstly, a four degrees-of-freedom AMB-rotor model with the static imbalance, dynamic imbalance, and the sensor runout are described. Next, a synchronous current reduction approach with a variable-phase notch feedback is proposed, so that the rotor imbalances can be identified on-line through the analysis of the synchronous displacement relationships of the geometric, inertial, and rotational axes of the rotor. Then, the identified rotor imbalances, which can be represented at two prescribed balancing planes of the rotor, are compensated by discrete add-on weights whose masses are calculated in the vector form. Finally, a repetitive control algorithm is utilized to suppress the residual harmonic vibrations. The proposed field balancing and harmonic vibration suppression strategies are verified by simulations and experiments performed on a control moment gyro test rig with a rigid AMB-rotor system. Compared with existing methods, the proposed strategies do not require trial weights or an accurate model of the AMB-rotor system. Moreover, the harmonic displacements, currents, and vibrations can be well-attenuated simultaneously.
منابع مشابه
Elimination of Harmonic Force and Torque in Active Magnetic Bearing Systems with Repetitive Control and Notch Filters
Harmonic force and torque, which are caused by rotor imbalance and sensor runout, are the dominant disturbances in active magnetic bearing (AMB) systems. To eliminate the harmonic force and torque, a novel control method based on repetitive control and notch filters is proposed. Firstly, the dynamics of a four radial degrees of freedom AMB system is described, and the AMB model can be described...
متن کاملAnalysis of Vibration Characteristics of PD Control Active Magnetic Bearing and Cracked Rotor System (RESEARCH NOTE)
Crack fault of rotor is one of the most prominent problems faced by magnetic bearing rotor system. In order to improve the safety performance of this kind of machinery, it is necessary to research the vibration characteristics of magnetic bearing cracked rotor system. In this paper, the stiffness model of the crack shaft element was established by the strain energy release rate (SERR) theory. T...
متن کاملOptimal One-plane Active Balancing of a Rigid Rotor during Acceleration
Rotating machinery, including machining spindles, industrial turbomachinery, and aircraft gas turbine engines, are very commonly used in industry. One major problem faced by these machineries is the harmful, imbalance-induced vibration. Many methods have been developed to reduce this vibration: o!-line balancing methods [1], on-line active balancing methods using mass redistribution devices [2}...
متن کاملAVC Using a Backstepping Design Technique
This chapter deals with the vibration attenuation or vibration suppression by means of feedback control techniques applied to decrease the dynamic response of a rotor assumed as active magnetic dynamic damping which is common in rotating machinery supported by active magnetic bearings. Position control systems applied on active magnetic bearings are using sometimes nonlinear robust control tech...
متن کاملH∞ Robust Controller Design and Experimental Analysis of Active Magnetic Bearings with Flexible Rotor System
H∞ controller for active magnetic bearings (AMBs) with flexible rotor system was designed in this paper. The motion equations of AMBs and flexible rotor system are built based on finite element methods (FEM). Weighting function matrices of H∞ controller for AMBs are studied for both the sensitivity and the complementary sensitivity of H∞ control theory. The simulation shows that the H∞ control ...
متن کامل